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GROWTH LAW OF A SPHERICAL SECOND PHASE AS
GOVERNED BY SIMULTANEOUS HEAT AND
MULTI-COMPONENT MASS TRANSFER LIMITATIONS—III

W. S, CHANG
Max Planck Institut fiir Biophysikalische Chemie, Karl Friedrich Bonhoeffer institut, Gottingen, West Germany

Abstract—In Part III, new theoretical treatments of the growth of a fast moving spherical second phase as

governed by simuitaneous heat and multi-component mass transfer limitations are demonstrated. The

method is a direct extension of {1-3]. It demonstrates that the solution to these complex coupled cases can

be related to the available uncoupled cases. Thus, treating the so-called “impurities” as components in

the surrounding first phase, our results should inciude the growth of a fast moving spherical second phase

as governed by simultaneous heat and mass transfer limitations in the presence of impurities as asymptotic
cases.

STATEMENT OF THE PROBLEM

THE PROBLEM under consideration in Part III is
as follows: A spherical second phase of size, R,
is produced in a N-component environment. i.e.
the surrounding first phase, at time ¢ = 0. The
second phase can be a bubble {(gas), a dropliet
(liquid), or a particle (solid). At time t = 0, the
entire second phase is assumed to have attained
a certain proper equilibrium temperature T, ie.
the wet bulb temperature, and remain at this
temperature throughout the growth process.
That is, one assumes that throughout the entire
transient growth process a constant T exists,
corresponding to a set of constant surface con-
centrations, C, (T, Coz Cuzs -+ -« Cun-1)
and C (i =2,3....,N — 1), which must be
found as part of the problem solution (see
Discussion). At times ¢ > 0, the spherical second
phase starts to grow due to both heat and N-
component mass transfer driving forcesand move
fast in the surrounding first phase. The center
of the second phase sphere is assumed to move
at a velocity U_ relative 10 stationary coordi-
nates and the flow field around the second phase
sphere is assumed to be approximated by the
potential flow. Since only the second phase with
uniform constant temperature and solute con-

centrations is considered, the internal flow
within the second phase itself is not considered.

The spherical second phase is characterized by
the following parameters: initial radius, R,
density, p, latent heat of phase transition.
L(T,) (< Ofor endothermic; > 0 for exothermic).
and first component saturation concentration.
C,(T.C,, Cy,...,Cy_,); the surrounding first
phase is characterized by the following para-
meters: density, p, specific heat, C, eflective
thermoconductivity, 4, and effective Fick's dif-
fusion coefficients. D(i = 1,2,,..,N — 1). The
first phase is initially at a uniform temperature
T, and solute concentrations C_,(i=1,2,....
N — 1), while the second phase is assumed to
have a uniform temperature T, and solute
concentrations C, (i = 1,2,..., N — 1) through-
out the growth process. Thus, the mass transfer
process within the second phase is not considered
here.

During the growth process, ie t = 0. the
system is described by the following equations.
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whereirunsfromitoN — l,a = A/(,oC ) is the
thermal diffusivity of the surroundmg first
phase, and the first component surface concen-
tration is assumed to be C_, = C,_(T,.C,,.

C,n-1) The problem is to find the a priori
unknown interface temperature T, and con-
centrations C (i = 1,2,..., N — 1) and obtain
the growth law of the second phase, R(1).

METHOD OF SOLUTION

The key to this physically important problem
is to recognize the fact that the growth laws
obtained from either heat or N-component
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mass transfer viewpoints must be identical
Thus, one obtains the compatibility conditions
from which T and C (i =1,2,...,N ~ 1) are
calculated (see below). The exact solution of
this very complicated problem is still yet to be
found. However. for certain asymptotic extremes,
various kinds of valid approximations are
available.

(i) Boundary laver approximation for the small

density ratio p /p case
With the small density ratio

1> p,/p o
and the thin boundary layer assumptions, ie.
2
5 T 20T (8a)
ror
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the governing equations (1)}-(6) are simplified
into the following form [9, 12],
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T(0,0,8) =T (11a)



Cix.0,t) =C_,; (11b)
T0,0.0=T, (12a)
C{0,0.0)=C,, (12b)
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dR Cu—C. 2 ’ dy y=0

R(0) = R, (14)

From the heat transfer viewpoint, i.e. equation
(9a), (10a), (11a), (12a), (I3a) and (14), the tem-
perature variable T(y,0,t) satisfies the same
boundary value problem as in [9] and [12].
Thus, one gets [9, 12]
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problem as in [9] and [12]. Thus, one gets
[9.12]

Na®. /D,
R (1) =R, ~ f»"- V(;‘)-Gm(z) (20)

where
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and G, (1) is given by Gr) (equation (17)) with
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By = Emi(t) = -—-——————-d indR["“'(r), {23)

The uniqueness of the growth law of the second
phase ie. R,()=R_ () =R (D =...=
R, (t) = R(t), gives the following compati-
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V=40 =20
and
B = B =42 df'-"). (19)

From the ith component mass transfer view-
point, i.e. equations (9b). (10b), (11b), (12b),
(13b) and (14), the concentration variable
Cly.0.1) satisfies the same boundary value

The values of T, and C; (i = 1,2,...,N —~ 1)
must be properly chosen so that the compati-
bility conditions, equation (24), are satisfied.
Then, the required growth law of the second
phase is given by
g
R(t) = R, ~ Ef—" (1) .Gt

T

/

Na? . D.
— R, - Yo J(_;).Gm (25b)

where G(t) is given by equation (17) with

{25a)
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_ UR®)
At =~ (26)
and
By =& 1’;’:(’). 27

It is noteworthy that both the parameters
characterizing the velocity flow field in the
surrounding first phase and the spherical second
phase initial size R, do not appear in the com-
patibility conditions, equation (24). Equation
(24) is identical to both equations (25) and (46)
of Part IT and can also be shown identical to
equation (16) of Part I, if one brings in the same
asymptotic approximation in Part I Thus,
within the validity of the approximation, the
fact that the second phase is moving fast, does
not come into play at all as far as calculating
the a priori unknown second phase temperature
T, and surface concentrations C, (i = 1,2,...,
N —1) is concerned. To fix the ideas, we will
consider the following physically important
asymptotic cases.

Case1:N =2 (28)

When N =2, ie. two-component environ-
ment, the main results obtained in [3] are
recovered, as expected.

Case2:N =3 29)
When N = 3, ie. three-component environ-

ment, equation (24) degenerates into the
following form
Bj.\a=B,.\D,
=B,.D,. (30)

Owing to C,, (T, C,) relation, equation (30)
determines unique values for T, C , = C,,
(T,, C,,» and C_,. Then, the required growth
law of the second phase is given by either
equation (25a) or (25b). Treating the first com-
ponent as the main solute, the second component
as the impurity, and the third component as the
solvent, this is the case when the growth of the
fast moving spherical second phase is governed
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by simultaneous heat and mass transfer limita-
tions in the presence of an impurity.

(ii) Boundary layer approximation for the large
density ratio p,/p case
With the large density ratio

1 <p,/p (31)

and the thin boundary layer approximations,
ie.

92T _ 20T
EdaT (22)
8*C. 20C.
Fdr (320)
T 1 (. 0T
> m%(m 03’0‘) (329
#c, 1 8. i,
Fike m@(sm 0 ‘aeT) (32d)
and
— R(t
osﬁs'Rd)<1 (32¢)

the governing equations (1}+6) are simplified
into the following form [10, 11]

oT U, oT
E - 3 T .cos @ '5)7
30, . oT T
+§.——R;-.sm9.%-a5;2— (33a)
éC. U oC
——-y.3.—-=, -
5 y R cos 0 R
3 U, . oC, azci
+2—.—R;—.Sln9.‘aT——Dia—y-2—~ (33b)
T3,0,0) =T, (34a)
C(»,6,0) = Coi (34b)
T(,0,) = T_ (35a)
C(0,0,8)=C,,; (35b)
T0,6,)=T, (36a)
C0,8,1)=C,, (36b)
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From the heat transfer viewpoint, i.e. equations
(33a), (34a), (35a), (36a), (37a) and (38), the tem-
perature variable T(y, 6, ) satisfies the same
boundary value problem as in [10] and [11].
Thus, one gets [10, 11]

R,() =R, - \/(%).Na:.ﬂh(t) (39)

where A (t) is given by H(t)

t

_ [V
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0
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and
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R,{1)

From the ith component mass transfer view-
point, ie. equation (33b), (34b), (35b), (36b),
(37b) and (38), the concentration variable
C(y,0,t) satisfies the same boundary value
problem as in [10] and [11]. Thus, one gets
[10,11]

R0 = R, - \/ (z—f-) Nao, B0

where A (1) is given by H() (equation (40))

(43)
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with
5e) = 7, 00) = 3. YolRudd)
R,1)
The uniqueness of the growth law of the second
phase, ie. R =R, ()=R_,()=...=
R, y_.(t) = R(r), gives the following compati-
bility conditions:
B} .o =B, .\D,
=B,. \/Dz

(44)

m

=Biy_1-vDy-y- (45)

The values of T, and C,, (i = 1,2,...,N — 1)
must be properly chosen so that the compati-
bility conditions, equation (45), are satisfied.
Then, the required growth law of the second
phase is given by

R() =R, ~ \/ (%) .Nat . H(r)
=R, - \/ (%) .Na?, . H(r)  (46b)

where H(t) is given by equation (40) with
U o(R@®)

Rt
It is noteworthy that both the parameters
characterizing the velocity flow field in the
surrounding first phase and the spherical second
phase initial size R, do not appear in the com-
patibility conditions, equation (45). Equation
(45) is identical to equation (24) and both
equations (25) and (46) of Part II and can also be
shown identical to equation (16) of Part I, if
one brings in the same asymptotic approxima-
tion in Part I. Thus, within the validity of the
approximation, the fact that the second phase is
moving fast, does not come into play at all as
far as calculating the a priori unknown second
phase temperature T, and surface concentra-
tions C,; (i = 1,2,..., N — 1) is concerned. To
fix the ideas, we will consider the following
physically important asymptotic cases.

(46a)

)y =3. 47
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Case1:N =2 (48)

When N =2, ie. two-component inviron-
ment, the main results obtained in [3] are
recovered, as expected.

Case2: N =3 (49)
When N = 3, i.e. three-component environ-
ment, equation (45) degenerates into the
following form
Bz'\/“ = By, '\/ID1
= B%,.\/D,. (50)
Owing to C,, (T, C,) relation, equation (50)
determines unique values for T, C , = C_,
(T,, C,,)» and C,,. Then the required growth
law of the second phase is given by either
equation (46a) or (46b). Treating the first com-
ponent as the main solute, the second component
as the impurity, and the third component as the
solvent, this is the case when the growth of the
fast moving spherical second phase is governed
by simultaneous heat and mass transfer limita-
tions in the presence of an impurity.

DISCUSSION

It is assumed that all the solute and heat
diffusions in the surrounding first phase are
adequately described by unsteady state convec-
tive diffusion equations with effectively constant
Fick’s diffusion coefficients and an effectively
constant thermoconductivity. It is assumed that
all the parameters characterizing second and
first phases are effectively constant and there
exists a local equilibrium relationship, C,,, (T,
C.p Cos3-...Con_y) at r= R(t) throughout
the growth process. The compatibility condi-
tions, equation (24) (for small density ratio
p,/p) or equation (45) (for large density ratio
p,/p), are the necessary and sufficient conditions
for the existence of the stated constant inter-
face conditions solution, i.e. it guarantees the
uniqueness of the growth law of the second
phase, R(t). Thus, the basic assumption of
strictly constant 7, and C, (i = 1,2,...,N — 1)
is automatically justified a posteriori for the
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second phase problems of the type considered
here. Physically, the necessary and sufficient
compatibility conditions mean that the second
phase can grow if one maintains T(c0,t) = T
and C{oo,t) = C (i = 1,2,...,N — 1)through-
out the entire transient growth process. In
concluding this work, for those physically
important interesting cases where the constant
interface condition assumptions are violated,
i.e. the growth of the second phase is governed
by simultaneous heat and mass transfer limita-
tions with kinetic interface, we will treat them
elsewhere; and for those complications caused
by the geometry of the second phase (e.g. plate-
like, cylindrical, and general paraboloid and
ellipsoid), the treatments presented here can
readily be applied [13].

CONCLUSIONS

In Part 111, two valid approximate treatments
of the growth of a fast moving spherical second
phase in the presence of simuitaneous heat and
N-component mass transfer limitations have
been demonstrated. In general, a trial-and-error
method must first be used to solve the com-
patibility conditions, equation (24) or equation
(45), to obtain the a priori unknown second
phase temperature and surface concentrations.
Having thus determined T, and C (i = 1,2,.. ..
N-— 1), the growth law of the second phase is
then readily obtained. Treating the so-called
“impurities” as components in the surrounding
first phase, our results should include the
growth of a fast moving spherical second phase
as governed by simultaneous heat and mass
transfer limitations in the presence of impurities
as asymptotic cases.
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LOI DE CROISSANCE D'UNE SECONDE PHASE SPHERIQUE GOUVERNEE PAR
DES CONDITIONS DE TRANSFERTS SIMULTANES DE CHALEUR ET DE
MASSE—III

Résamé—Dans cette troisieme partie, on considére de nouveaux traitements théoriques de la croissance
d’une seconde phase sphérique en déplacement rapide, gouvernée par des limitations de transferts simultanés
de chaleur et de masse. La nouvelle méthode st une extension directe de celle des références (1-3). I est
démontré que la solution de ces cas couplés complexes peut étre reliée & des cas non couplés connus.
Ainsi, traitant les impuretés comme des composants dans la premiére phase environnante, les résuitats
peuvent inclure. comme des cas asymptotiques, la croissance d’une seconde phase sphérique en déplacement
rapide, gouvernée par des limitations de transferts simultanés de chaleur et de masse en présence des
impuretés.

WACHSTUMSGESETZ EINER KUGELFORMINGEN SEKUNDAI'IPHASE FUR
GLEICHZEITIGEN WARME- UND VIEL-KOMPONENTEN-STOFFUBERGANG—I{!

Zusammenfassung—Im Teil III werden neue theoretische Betrachtungen iiber das Wachstum einer durch
gleichzeitigen Wirmetibergang und Mehrkomponentenstoffiibergang begrenzten schnell bewegten
kugelfdrmigen Sekundiirphase angestelit. Die neue Methode ist eine unmittelbare Erweiterung von [1-3].
Sie zeigt, dass die Lsung dieser komplex iiberlagerten Fille .uf vorhandene ungekoppelten Fille iiber-
tragen werden kann. Indem man diese sogenannten "Unreinhciten™ als Komponenten in der umgebenden
ersten Phase behandelt, soliten unsere Bezichungen das Wachstum einer durch gleichzeitigen Wirme- und
Stoffiibergang begrenzten schnell bewegten kugelfdrmigen Seckundirphase in Anwesenheit der Unrein-
heiten als asy mptotische Fille enthaiten.

3AROH POCTA COEPUYECKON BTOPON ®A3BI NIPU OJ1HOBPEMEHHOM
[TEPEHOCE TEIJA U MHOTOKOMINOHEHTHON M.ACCBI—III

Ansoranua—B uactu IIl nokasadHa HOBAA TeopeTHYeCKaA TPAKTOBKA pOCTA OBICTPU
JBmKyme#ica cepnueckoil BTOpoil asnl OpU COBMUCTHOM IMEDPEHOCE TEeILIa M MHOTOKOM-
MOHEHTHON MacCH. HOBLIK METOX AB.11eTCA NPAMEM NPOIAIHKEHUEM METONA, H3I0MCHHOTO
B [1-3]. OH noaswHBaeT, YTO AJIA peIUEHHA TAKUX C.IUMKEBX 34744 B3AUMOCBA3AHHOTO
TEMI0-i MACHOGMEeHa MOMHKHO HCIOJIB30BATD i3BeCTHBE 1A MPOCTHX 3aay pemenns. Takum
00pasoM, pacuMaTPHBAA TAK HASHBAEMbe (BKIIYEHHA» KAK KOMMIOHEHTH OKpYKalomed ux
nepBo#t hasel, HEOOXOAUMO BKJIOUATh KAK ACUMOTOTHYECKUl Cay4ail pOCT SRICTpO ABUMKY-
meikca cdepudeckoit Bropo#t ¢asnl, onpegesaAeMelil 3aKOHOMEPHOCTSIMH OIHOB|MEHHOFO
TerI0-1 MAacCOMepeHoca NPy HAJINYHY NMpiMeceii.



