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Abs&8ct---fn Part III, new theoretical treatments of the growth of a fast moving spherical secund phase as 
governed by simultaneous heat and multi-component mass trader limitations are demonstrated. The 
method is a direct extension offl-31. It demonstrates that the solution to these complex coupled cases can 
be rejlated to the available uncoupfcd cases. Thus, treating the so-calIed “impurities” as compouents in 
the sunaunding first phase, our results should include the growth of a fast moving spherical second phase 
as governed by simultaneous heat and mass transfer limitations in the presence of impurities as asymptotic 

cases. 

STATEME,NT OF THE PROBLEM 

THE PROBL~ under consideration in Part III is 
as follows: A spherical second phase of size, R,, 
is produced in a N-component environment. i.e. 
the surrounding first phase, at time t = 0. The 
second phase can be a bubble (gas), a droplet 
(liquid), or a particle (solid}. At time t = 0, the 
entire second phase is assumed to have attained 
a certain proper equilibrium temperature Tu,, i.e. 
the wet bulb temperature, and remain at this 
temperature throughout the growth process. 
That is, one assumes that throughout the entire 
transient growth process a constant Tw exists, 
corresponding to a set uf constant surface con- 
centrations, C, f (T, C,,, CW3, . . . , CKhi _ I) 
and CWi(i = 2,3. _. . , N - If+ which must be 
found as part of the problem solution (see 
Discussion) At times t > 0, the spherical second 
phase starts tu grow due to both heat and N- 
component mass transfer driving forces and move 
fast in the surrounding first phase. The center 
of the second phase sphere is assumed to mave 
at a velocity U, relative to stationary coordi- 
nates and the flow field around the second phase 
sphere is assumed to be approximated by the 
potential flow. Since only tbe second phase with 
uniform constant temperature and solute con- 

centrations is considered, the internal flow 
within the second phase itself is not considered, 

The spherical second phase is characterized by 
the following parameters: initial radius, R,, 
density, pp latent heat of phase transition, 
L(T,) ( < 0 for endothermic: > 0 for exothermic}, 
and first component saturation concentration. 
c,,Jr: C,, C,, . . * t C,_ I); the surrounding first 
phase is characterized by the following para- 
meters: density, p, specific heat, Cp, effective 
thermoconductivity, A, and effective Fick’s dif- 
fusion coefficients, D,(i = 42, , . 1 1 N - 1). The 
first phase is initially at a uniform temperature 
TW and solute concentrations C,, (i = 1,2,. . ,. 

N - 11, while the second phase is assumed to 
have a uniform temperature TW and solute 
concentrations C,, (i = 1,2, _ . . , N - 1) through- 
out the growth process. Thus, the mass transfer 
process within the second phase is not considered 
here. 

During the growth process, i.e. t >, 0. the 
system is described by the following equations. 

DT = &T 
Dt ’ 

NO <rg?rXj (la) 

DC,=DVZC 
Dt i i’ 
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mass transfer viewpoints must be identical. 
Thus. one obtains the compatibility conditions 
from which T, and C,,(i = 1,2,...,N - 1)are 
calculated (see below). The exact sohrtion of 
this very complicated probiem is still yet to be 
found. However. for certain asymptoticextremes, 

yg=!g. l-s! .R ( > P 

I$=---u,. 1-$ ( > -COSl? 

V,=Um* I+$ ( > 1 sin e 

P$ = 
rrR(r) sin Ode 

R(0) = R, 

(W 
P-4 

(34 

(3b) 

various kinds of valid approximations are 
available. 
(i) Boundary layer approximation for the smnll 

deiisity ratio pd[p case 
With the small density ratio 

1 9 PaIP (7) 

and the thin boundary layer assumptions, i.e. 

(da) 
E2T 1 a 
p% -_ 

r2 sin 8 ae 

Wf 
the governing equations (l)-(6) are simplified 

(6) into the following form [9,12], 

where i runs from 1 to N - 1, a f J&C,) is the 
aT 
---. 

thermal diffusivity of the surrounding first at 

phase, and the first component surface concen- 
tration is assumed to be Cv, = C,,,(T,, C& (9a) 
. . I , C wN_ r). The problem is to find the a priori 
unknown interface temperature T, and con- 

8~. 
--!- 
at 

),. 
centrations C,,(i = 1, 2,. . . , N - 1) and obtain . . 
the growth law of the second phase, R(t). 3u 

-t -2-R m*sine3 = II.3 
’ dy2 

(9b) 

METHOD OF SOLUTION 

The key to this physicaliy important problem 
is to recognize the fact that the growth laws 
obtained from either heat or N-component 

rtv, e, 01 = Ih, 

C,(Y, 8, 0) = ‘ai 

T(m,e, t) = T, 

WW 

(lob) 

(114 
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C@. 6, t) = cai (lib) 

TfO, 0, c) = T, Wa) 

ci(0, 0, t) = cwi (12b) 

1 
p*k = --._L.-,_. 

-L(Tw) 2 
sin 0 do (13a) 

0 y-o 

Psfi = sin @de (13b) 

R(0) = R,, (14) 

From the heat transfer viewpoint, i.e. equation 
(9a), (lOa), (lla), (12a), (13a) and (14), the tem- 
perature variable T(Y, 8, t) satisfies the same 
boundary value problem as in [9] and [la]. 
Thus, one gets [9,12] 

R,(c) = R, - y * (15) 
where 

and c&t) is defined by &trt, 

problem as in [9] and [12]. Thus, one gets 
[9.12] 

where 

and GJt) is given by G(t) (equation (17)) with 

and 

A(t) = A,,(t) = 
U,(RJt)) 

R,,(t) 
(22) 

B(t) = B,i(c) 3 d ind?? (331 

The uniqueness of the growth law of the second 
phase i.e. R,,(t) = R,,(t) = R,,(t? = . . . = 
R mN- l(t) = R(t), gives the following compati- 
bility conditions: 

=- - -- 

= fimN-, . ,,D,_,. (241 

sin 8 de dt 

1 - (tan” e/2). exd? A(s) dsl + 4&5j ’ 
’ 1 + (tan2 0/Z). exp[35 A(s) ds] ’ 

@ 1 I &, (17) 

* 

with 

and 

The values of T, and CWi (i = 1,2, . . . , N - 1) 
must be properly chosen so that the compati- 

18) bility conditions, equation (24), are satisfied. 
Then, the required growth law of the second 
phase is given by 

19) R(r) = R, - T , (25a) 

From the ith component mass transfer view- 
point, i.e. equations (9b). (lob), (lib), (IZb), = R,-E$. !$ . G(t) (25b) 

(13b) and (14), the concentration variable 
- i(! 

C,(y, 0, t) satisfies the same boundary value where i?(r) is given by equation (I 7) with 
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(26) 

and 

d In R(t) 
B(t) = 7 (27) 

It is noteworthy that both the parameters 
characterizing the velocity flow field in the 
surrounding first phase and the spherical second 
phase initial size R, do not appear in the com- 
patibility conditions, equation (24). Equation 
(24) is identical to both equations (25) and (46) 
of Part II and can also he shown identical to 
equation (16) of Part I, if one brings in the same 
asymptotic approximation in Part I. Thus, 
within the validity of the approximation, the 
fact that the second phase is moving fast, does 
not come into play ai all as far as calculating 
the a priori unknown second phase temperature 
T, and surface concentrations Cwi (i = 1,2,. . . , 
N - 1) is concerned. To fix the ideas, we will 
consider the following physically important 
asymptotic cases. 

Case 1: N = 2 (28) 
When N = 2, i.e. two-component environ- 

ment, the main results obtained in [3] are 
recovered, as expected. 

Case2: N = 3 (29) 
When N = 3, i.e. three-component environ- 

ment, equation (24) degenerates into the 
following form 

q. ,/a = BB,,. ,/Dl 

= Pm2 . ,,iD2. (30) 

Owing to C,,,(?: C,) relation, equation (30) 
determines unique values for T, C,, = CSa,l 

(T,, C,,), and C,,. Then, the required growth 
law of the second phase is given by either 
equation (25a) or (25b). Treating the first com- 
ponent as the main solute, the second component 
as the impurity, and the third component as the 
solvent, this is the case when the growth of the 
fast moving spherical second phase is governed 

by simultaneous heat and mass transfer limita- 
tions in the presence of an impurity. 

(ii) Boundary layer approximation for the large 
density ratio p,/p case 

With the large density ratio 

1 4 PJP (31) 

and the thin boundary layer approximations, 
i.e. 

W-4 

Wb) 

a2Tg 1 a 
F 

-- 
r2 sin e ae 

3% i a -- 
ar2 yZ sin e ae 

(32~) 

(32d) 

and 

0<; y - R(t) < 1 

=R(t)< (324 

the governing equations (lj(6) are simplified 
into the following form [ 141 l] 

aT 
- - y.3.J$.c0se.E at ay 

3 U,vsine aT a2T 
+? R *E’OL-v 

(334 

ac. 
- - y.3.+.c0Se.s 
at ay 

3 u ac. a2c. i2.R.She.g =DQ Wb) 

UY, 60) = T’ (34a) 

c,64 RO) = c,, (34b) 

T(m, 0, t) = T, (35a) 

C,(m, 0, t) = ‘,i (35b) 

T(0, 0, t) = T, (36a) 

‘Jo, 8, t) = C,, (36b) 
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with 

sin ~9 de (37a) Y(t) = ii&) = 3 . Up(RJt)) 
R,Jt) . 

(4) 

. sin 8 df9 (37b) 

R(0) = R,. (38) 

From the heat transfer viewpoint. i.e. equations 
(33a), (34a), (35a), (36a), (37a) and (38), the tem- 
perature variable T(y, 0, t) satisfies ‘the same 
boundary value problem as in [lo] and [ 111. 
Thus, one gets [ 10, 1 l] 

R,(t) . Naf, . R,(t) (39) 

where R,(t) is given by g(t) 

X s sin3 0 dt9 dT 

_ {[fc~, e) - cos e-j - f[J%. e) - c02e])* 
0 

with 
P-3 

fct. e) = ’ 
I - case - -----.exp[-j(t).t] : + z:i i (41) 

l+ - 
1 + cos 8 

. exp [ - y(t) . f] 

and 

?(‘) = ?h@) = 3 * 
U,(R,@)) 

R @) ’ (42) 
h 

From the ith component mass transfer view- 
point, i.e. equation (33b), (34b), (35b), (36b), 
(37b) and (38), the concentration variable 
C,(_v, 8, t) satisfies the same boundary value 
problem as in [lo] and [ 1 I]. Thus, one gets 
[lo. 11-J 

R,,(t) = R, - . Nazi . &(t) (43) 

where A,,,,(t) is given by R(t) (equation (40)) 

The uniqueness of the growth law of the second 
phase, i.e. Rh(t) = RJt) = RJt) = . . . = 
R ntN_ ,(t) = R(t), gives the following compati- 
bility conditions: 

q.Ja = BB,,.tlDl 

= pm2. $, 

=- - - 

= q&_ 1. \p,_ 1’ (45) 

The values of T, and CWi (i = 1,2,...,N - 1) 
must be properly chosen so that the compati- 
bility conditions, equation (49, are satisfied. 
Then, the required growth law of the second 
phase is given by 

R(t) = R, - (464 

= R, - Wb) 

where H(t) is given by equation (40) with 

7(t) = 3 . ‘UWO) 
R(t) ’ 

(47) 

It is noteworthy that both the parameters 
characterizing the velocity flow field in the 
surrounding first phase and the spherical second 
phase initial size R, do not appear in the com- 
patibility conditions, equation (45). Equation 
(45) is identical to equation (24) and both 
equations (25) and (46) of Part II and can also be 
shown identical to equation (16) of Part I, if 
one brings in the same asymptotic approxima- 
tion in Part I. Thus, within the validity of the 
approximation, the fact that the second phase is 
moving fast, does not come into play at all as 
far as calculating the a priori unknown second 
phase temperature T, and surface concentra- 
tions C, (i = 1,2,. . . . N - 1) is concerned. To 
fix the ideas, we will consider the following 
physically important asymptotic cases. 
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Case 1: N = 2 (48) 
When N = 2, i.e. two-component inviron- 

ment, the main results obtained in [3] are 
recovered as expected. 

Case2: N = 3 (49 
When N = 3, i.e. three-component environ- 

ment, equation (45) degenerates into the 
following form 

4, Jw. = BB,, . JOI 

= Em,.JD,. (50) 

Owing to C,,,(‘I; C,) relation, equation (50) 
determines unique values for T,, C,, = C,,, 

(Tw9 C,,X and C,,. Them the required growth 
law of the second phase is given by either 
equation (46a) or (46b). Treating the fvst com- 
ponent as the main solute, the second component 
as the impurity, and the third component as the 
solvent, this is the case when the growth of the 
fast moving spherical second phase is governed 
by simultaneous heat and mass transfer limita- 
tions in the presence of an impurity. 

DISCUSSION 

It is assumed that all the solute and heat 
diffusions in the surrounding first phase are 
adequately described by unsteady state convec- 
tive diffusion equations with effectively constant 
Fick’s diffusion coefficients and an effectively 
constant thermoconductivity. It is assumed that 
all the parameters characterizing second and 
first phases are effectively constant and there 
exists a local equilibrium relationship, C,,,( T,, 
C Cw3,. . . , C,,,,_ i) at r = R(t) throughout 
th?‘growth process. The compatibility condi- 
tions, equation (24) (for small density ratio 
p,,/p) or equation (45) (for large density ratio 
p,/p), are the necessary and sufficient conditions 
for the existence of the stated constant inter- 
face conditions solution, i.e. it guarantees the 
uniqueness of the growth law of the second 
phase, R(t). Thus, the basic assumption of 
strictly constant T, and Cwi (i = 1,2,. . . , N - 1) 
is automatically justified a posteriori for the 

second phase problems of the type considered 
here. Physically, the necessary and sufficient 
compatibility conditions mean that the second 
phase can grow if one maintains T(co, t) = T, 
andCXm,t) = C,i(i = 1,2,...,N - l)through- 
out the entire transient growth process. In 
concluding this work, for those physically 
important interesting cases where the constant 
interface condition assumptions are violated, 
i.e. the growth of the second phase is governed 
by simultaneous heat and mass transfer limita- 
tions with kinetic interface, we will treat them 
elsewhere; and for those complications caused 
by the geometry of the second phase (e.g. plate- 
like, cylindrical, and general paraboloid and 
ellipsoid), the treatments presented here can 
readily be applied [ 133. 

CONCLUSIONS 

In Part III, two valid approximate treatments 
of the growth of a fast moving spherical second 
phase in the presence of simultaneous heat and 
N-component mass transfer limitations have 
been demonstrated. In general, a trial-and-error 
method must first be used to solve the com- 
patibility conditions, equation (24) or equation 
(45), to obtain the a priori unknown second 
phase temperature and surface concentrations. 
Having thus determined T, and CWi (i = 1,2, . . . 
N- - l), the growth law of the second phase is 
then readily obtained. Treating the so-called 
“impurities” as components in the surrounding 
first phase, our results should include the 
growth of a fast moving spherical second phase 
as governed by simultaneous heat and mass 
transfer limitations in the presence of impurities 
as asymptotic cases. 
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LO1 DE CROISSANCE DUNE SECONDE PHASE SPHERIQUE GGUVERNEE PAR 
DES CONDITIONS DE TRAUSFERTS SIMULTANES DE CHALEUR ET DE 

MASSE-III 

R&rsm&-Dans cette troisieme partie, on comldtre de nouveaux traitements thioriques de la croissance 
d’unes~ndephascsph~queendCplactmentrapide,gouvemtepardeslimitationsde transfertssimultanes 
de chaleur et de masse. La nouvelle methode est une extension directe de celle des references (l-3). 11 est 
d&montrC que la solution de ces cas coup& complexes peut etre reliee a des cas non couples connus. 
Ainsi, traitant les impuretQ comme des composants dans la premiere phase environnante, Is risultats 
peuvent inclure. comme des cas asymptotiques, la croissance d’une seconde phase sphtrique en d&placement 
rapide, gouvem&e par de< limitations de transferts simuhanb de chaleur et de masse en presence des 

impuretes. 

WACHSTUMSGESETZ EINER KUGELFGRMINGEN SEKUNDARPHASE FUR 
GLEICHZEITIGEN WARME- UND VIEL-KOMPONENTEN-STOFFUBERGANG-I I I 

ZmunmdfIm TeiI III we&n neue theoretische Betrachttprgen iiher das Wachstum einer durch 
gkiehzeitigen WRrmeDhergang nnd Mehrkomponentensto~ hegmnxten schnell hewegten 
kugdf6rmigen S&tm&rphase angesteht. Die neue Met&de ist eine unmittelbare Erweiterung von [l-3]. 
Sic zeigt, dam die L&mng dieser kompla tiberhgerten FUle .mf vorhandene ungekoppelten F&he iiher- 
tragen werden kann. lndem man diese sogenannten “Unreinhciten” ah Komponenten in der umgebenden 
ersten Phase hehandelt, solltcn unsere Bexiehtmgen das Wachatutn einer durch gIei&eitigen W&me- und 
StoffiIhergang hegrenxten schnell hewegten kugelfbnnigen Sekundlirphase in Anwesmheit der Unrein- 

heiten ah a%> mptotische Falle enthalten. 

3AHOH POCTA C@EPHYECKOH BTOPOH @_43bI IIPII OflIIOBPEMEHHO&i 
IIEPEHOCE TEHJIA M MHOFOKOMI-IOHEHTHOH M.\t:CbI-III 

AEEIOT~~IW-B qaCTM 111 nOKa3aHa HOBan TeopeTHqecKaR TpaKTOBKa pOCT3 6bICTpU 

~zBEI~y~e&x c@epnsecKofi ~~opoir (n:~br npu COUNUCTH~M nepeaoce Terma LL MH~~OK~H- 

noHeiimiotl Maccbx. Moenti reToz Ht4.lr11'Tcx npfiMbIM npnxaxHceHwM MeToAa, ss3~oHieriHoro 

B [l-3]. OH tIOKa3bIBaeT, YTO 2.W ~eUIeHWl TaKMX C.lUNebXX %$(a'4 B3allMOCBH3aHHUl'O 

TetIJIO-H MaCcY~O6MeIia MOWHO MCIIOJIbaOBaTb Ll3BeCTHble ;[.?lf IIpOCTbIX 3aAaY peJ.W?HHFt. TaKIrM 

06paaor, paccMaTpwafI TaK Ka3bnsaeMhle (<BKJIlO9eHHRb IiRK KOMnOHeHTbI oiipyit;aio~efi &ix 

IIepBOfi @a3bI, HeO6XOAHMO BKJIWIaTb KaK aCMMllTUTW'feCKkffi CJIyYafi pOCT &ICT[lO ABPlitcy- 

melcfr c@epwfecKofi BTopoft cpasu, OIIpe~eJ7ReMbIfi 3aKOHOMepHOCTfl~I~f O;[HOB~~~YeHHOt'O 

renno-n MacconepeHoca np~ Ha.wiwi~ nprr>iecefi. 


